If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x+5.76=0
a = 1; b = 5; c = +5.76;
Δ = b2-4ac
Δ = 52-4·1·5.76
Δ = 1.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1.96}}{2*1}=\frac{-5-\sqrt{1.96}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1.96}}{2*1}=\frac{-5+\sqrt{1.96}}{2} $
| 5^x-2*5^(x-2)=23 | | 2x+2=6x+10 | | 5(p+1)-3(4-p)=9 | | X/65=x+5/70 | | (2x+15)+(2x-20)+x=180 | | 25(5x)=65 | | 9s=7+1 | | 21x^2-59x-40=0 | | Z+24=11z | | 81b^2-25b=0 | | -6×+12y=6 | | Z2+24=11z | | 3×+5x-7x=0 | | Z2-24=11z | | 7p-15=3p+1 | | 3×^+5x-7x=0 | | (9x+8)/4=11 | | 6-x/11=17 | | (3*x-5)-(2*x+2)=1 | | 2(2z^2+7z-4)=0 | | x^2+3x+30=13x+5 | | (5t-t-7)(5t^2+5t-1=) | | -3z+1=-z2 | | y+5.5=-10.5 | | 3r+3(r+7)=303 | | 4a+1=5a-8 | | 55+165x=1705 | | .8x-5.5(x-1)=29 | | 3x+(x+22)=4.5 | | 6z+5(4-z)=-(z-3)+5 | | 6z+5(4-z=-(z-3)+5 | | 7-5x+x=35 |